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REPORT SUMMARY

This is a semiannual report presenting the research results obtained from the research grant

entitled "Control of Robot Manipulator Compliance," funded by the Goddard Space Flight Center

(NASA) under a research grant with Grant Number NAG 5-780, for the period between August

i, 1990 and January 1, 1991.

In this report we present the kinematic analysis and implementation of a 6 DOF robotic

wrist which is mounted to a general open-kinematic chain manipulator to serve as a testbed for

studying precision robotic assembly in space. The wrist design is based on the Stewart Platform
mechanism and consists mainly of two platforms and six linear actuators driven by dc motors.

Position feedback is achieved by linear displacement transducers mounted along the actuators

and force feedback is obtained by a 6 DOF force sensor mounted between the gripper and the

payload platform. The robot wrist inverse kinematics which computes the required actuator

lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics

is solved iteratively using the Newton-Raphson method which simultaneously provides a Modified

Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates

of change of Roll-Pitch- )Paw angles. Results of computer simulation conducted to evaluate the

efficiency of the forward kinematics and Modified Jacobian Matrix are presented and discussed.



1 INTRODUCTION

Motions robots perform during a robotic operation in space can be divided into gross motion and

fine motion. Gross motion permits low positioning accuracy, e.g. in obstacle avoidance, while fine

motion requires very high positioning accuracies, usually of thousands of an inch, e.g. in mating

and demating space-rated connectors. Traditional robot manipulators are anthropomorphic

open-kinematic chain (OKC) mechanisms whose joints and links are actuated in series. OKC

manipulators generally have long reach, large workspace and are capable of entering small spaces

because of their compactness. However, their cantilever-like structure causes OKC manipulators

to have low stiffness and consequently undesirable dynamic characteristics, especially at high

speed and large payload. In addition, they have low strength-to-weight ratios due to the fact

that the payload is not uniformly distributed to the actuators. Finally, the fact that relatively

large position error occurs at the last link because the joint errors are accumulated throughout

the mechanism suggest that OKC manipulators are not suitable for high precision tasks. As a

result, it was proposed in [1,2] that a robotic end-effector capable of performing high precision

motion be mounted to a general OKC manipulator to perform fine motion while the OKC

manipulator is solely responsible for carrying out gross motion during a telerobotic operation.

Closed-kinematic chain (CKC) mechanism has been selected for the design of the end-effector

because even though it has relatively small workspace and low maneuverability, it possesses high

positioning capability produced by its high structural rigidity and noncumulative actuator errors.

CKC mechanism also has higher strength-to-weight ratios as compared to OKC mechanism

because the payload is proportionally distributed to the links. In addition, the inverse kinematic

problem of the CKC mechanism has simple closed-form solutions. Implementation of the CKC

mechanism concept first appeared in the the Stewart platform [3] which was originally designed

as an aircraft simulator. A typical Stewart Platform consists of two platforms driven by a

number of parallel actuators and is often referred as parallel mechanism or parallel manipulator.

The invention of the Stewart platform has attracted tremendous robot designer's attention and

its mechanism was used in many robotic applications [4,18]. Dieudonne [4] and his coworkers

derived an actuator extension transformation and presented experimental results of a Stewart

Platform-based simulator built at NASA Langley Research Center to train aircraft operators.

A finite element program was used by tIoffman and McKinnon [5] to simulate the motion of the

Stewart Platform whose mechanism was later applied by McCallion and Truong [6] to design an

automatic assembly table. Hunt [7] conducted a systematic study of in-parallel-actuated robot

arms and presented the structural kinematic problem this type of manipulators [9]. Sugimoto

and Duffy [8] developed a general technique to describe the instantaneous link motion of a

single closed-loop mechanism by employing linear algebra elements to screw systems. In order

to study autonomous robotic assembly, Premack [10] and his coworkers employed the Stewart

Platform mechanism to build a passive compliant robot end-effector whose control problem was

investigated by Nguyen and others [11]. Kinematic problems and practical construction of the

Stewart Platform were later considered by Yang and Lee [12] and Fichter [13], respectively.

Sugimoto [14] studied kinematics and dynamics of parallel manipulators and Lee [15] derived

dynamical equations for a 3 degree-of-freedom (DOF) CKC manipulator. Nguyen and Pooran

[16] developed a learning control scheme for a 2 DOF CKC manipulator performing repetitive

tasks. Trajectory planning schemes were developed by Nguyen et al [19] for Stewart Platform-

based manipulators whose actuators are driven by stepper motors.



Recentlya robotic wrist possessing6 DOF'swasdesignedand built at the GoddardSpace
Flight Center(NASA) basedon the mechanismof the StewartPlatformto serveas a testbed
for studyinghigh precisionroboticoperationsin space.This report presentsthe development
andimplementationof kinematictransformationsfortile roboticwrist. Thisreport isorganized
asfollows.Nextsectiondescribesthe maincomponentsof the roboticwrist. Thena kinematic
analysisis performedto providea closed-formsolutionto the inversekinematictransformation.
After that, a computationallyefficientsolutionis derivedfor the forward kinematictransfor-
mationusingthe Newton-Raphsonmethodwhichsimultaneouslyprovidesa ModifiedJacobian
Matrix. Finally evaluationof the forward kinematictransformationand ModifiedJacobian
Matrix is doneby meansof computersimulationwhoseresultsarepresentedanddiscussed.

2 THE STEWART-PLATFORM BASED ROBOTIC WRIST

Figure 1 presents a robot manipulator of the Intelligent Robotic Laboratory (IR.L) at the God-

dard Space Flight Center (NASA), which consists of a 6 DOF Cincinnati T3 robot and a 6 D0F

Stewart Platform-based robotic wrist mounted to the last link of the T3 robot. The manipulator
has a total of 11 DOF's since one DOF of the wrist is identical to that of the T3 Robot. The

main function of the T3 robot is to perform gross motion, for example to bring the robotic

wrist into its workspace and then let the wrist carry out fine motion required for high precision

operations such as assembly of parts, mating connectors, etc. As shown in Figure 2, the design

of the robotic wrist is based on the mechanism of the Stewart Platform. It mainly consists of

a payload platform, a base platform, six linear actuators and a gripper attached to the payload

platform. The payload platform is coupled with the base platform by the actuators each of

which is composed of a NSK ballscrew assembly mounted axially with a PMI dc motor. The

motors drive the ballscrews to extend or shorten the actuator lengths whose variations will in

turn produce the motion of the payload platform relative to the base platform. The actuator

lengths are measured by six BALLUFF linear displacement transducers (LDT) mounted along

the actuators. Forces/torques exerted by the gripper is acquired through a JR a Universal Force-

Moment Sensor System mounted between the gripper base and the payload platform. Each end

of the actuator links is mounted to the platfornls by 2 DOF universal joints. The LDT signals

are sent to the IRL Local Area Network (LAN) via an Ethernet board and a Data Translation

input board resided in a PC/386. An Apollo workstation will take the sensor signals off the

LAN by means of another Ethernet board, performs all necessary computations for the imple-

mentation of control schemes, coordinate transformations, etc., and sends the actuating signals

to the PMI motor drives via a Data Translation output board.

3 THE INVERSE KINEMATIC TRANSFORMATION

This section develops an inverse kinematic transformation for the robot wrist, which determines

the required actuator lengths for a given configuration composed of Cartesian position and

orientation of the payload platform with respect to the base platform. Frame assignment to the

robot wrist is illustrated in Figure 3 where two coordinate frames {P}, and {B) are assigned to

the payload and base platforms, respectively. The origin of Frame {P} is located at the centroid

P of the payload platform, the zp-axis is pointing outward and the xp-axis is perpendicular

to the line connecting the two attachment poii_ts P1 and P6. The angle between /:'1 and P2 is



denotedby 0p. A symmetrical distribution of joints on tile payload platform is achieved by

setting the angles between /)1 and P3 and between P3 and P5 to 120 °. Similarly, Frame {B}

has its origin at the centroid B of the base platform. The xB-axis is perpendicular to the line

connecting the two attachment points B1 and B6 the angle between B1 and B2 is denoted by

8B. Also the angles between B1 and B3 and between B3 and B5 are set to 120 ° in order to

symmetrically distribute the joints on the base platform. The Cartesian variables are chosen

to be the relative position and orientation of Frame {P} with respect to Frame {B} where the

position of Frame {P} is specified by the position of its origin with respect to Frame {B}. Now

if we denote the angle between PPi and xp by A,', and the angle between BBi and xB by Ai for

i=1,2,... ,6, then by inspection we obtain

Ai=60i °- _; )q =60i°---0P2, fori= 1,3,5 (1)

and

Ai = Ai-1 + OB; hl = Ai-1 + Op, for i = 2,4,6. (2)

Furthermore, if Vector PPi = (Pix Ply Piz)T describes tile position of the attachment point Pi

with respect to Frame {P), and Vector Bbi = (bix biy biz) T the position of the attachment point

Bi with respect to Frame {B), then they can be written as

=PPi [rpcos()_i) rpsin(Ai) 0 (3)

and

abi [rBcos(Ai) rBsin(Ai) 0 (4)

for i=1,2,... ,6 where rp and rB represent tile radii of the payload and base platforms, respec-

tively.

We proceed to consider the vector diagram for an ith actuator given in Figure 4. The

position of Frame {P) is represented by Vector Sd = [x y z]T which contains the Cartesian

coordinates x, y, z of the origin of Frame {P} with respect to Frame {B}. The length vector

Bqi = (qix qiy qiz) T, expressed with respect to Frame {B} can be computed by

B qi = BX i + Bpi (5)

where

Bx i = Bd - Bb i (6)

= y - bi_ = y - biu = Yi
z - bi_ z #i

which is a shifted vector of Bd and

rll r12 r13

= r21 r22 r23

r31 r32 r33

(7)

= %, (8)

Ply = r21Pix -_- r22Piy -_ ui (9)

Piz r31Pix + r32Piy wi



which is the representation of Bpi in Frame {B} and pRR is the Orientation Matrix representing

the orientation of Frame {P} with respect to Frame {B}.
Thus the length li of Vector Bqi can be computed fi'oln its components as

li = k/q2:c + q_y + q_z" (10)

or

We obtain from (3)-(4)

li = V/(2i + u_)2 + (/]i + vi) 2 + (zi + wi) 2

+ + p,\=

+ +by:=
and from the properties of orientation matrix

r121 3L r221 n(- r321 -- r22 _[- r222 _- r22 = r123 _- r23 -4- r 2 : 1

(11)

(12)

(13)

(14)

and

rllrl2 -it- r21r22 + r31r32 -= 0

rllrl3 -4- r21r23 -4- r31r33 ---- 0

rllrl3 -_- r22r23 -4- r32r32 ---- O.

Employing (12)-(15), (10) can be rewritten as

li2 = x 2 + y2 + z 2 + r2P + r_ + 2(rnpi_ + r12piu)(x _ bit)

+2(r21pix + r22piy)(Y - biu) + 2(r31pi_. + r32Pi_)z - 2(xbix + Ybiu),

(15)

(16)

for i=1,2,... ,6.

Equation (16) represents the closed-form solution to tile inverse kinematic problem in the

sense that required actuator lengths Ii for i=1,2,...,6 Call be determined using (16) to yield

a given Cartesian configuration composed of Cartesiau position and orientation of Frame {P}

with respect to Frame {B}.

Specification of the Payload Platform Orientation

The orientation of Frame {P} with respect to Frame {B} can be described by the orientation

matrix pSl:t as shown in (9) which requires nine variables rij for ij=1,2,3 from which six are

redundant because only three are needed to specify an orientation [21]. There exist several ways

to specify an orientation by three variables, but the most widely used one is the Roll-Pitch-Yaw

angles a,/3, and 7, which represent the orientation of Frame {P}, obtained after the following

sequence of rotations from Frame {B}:

1. First rotate Frame {B} about the xB-axis an angle 7 (Yaw)

2. Then rotate the resulting flame about the yR-axis an angle fl (Pitch)

3. Finally rotate the resulting flame about the zB-axis an angle a (Roll).



The orientationrepresentedby the aboveRoll-Pitch-Yawanglesis givenby 1

[ ca c/3 ca s3 sT- sa c7 ca s_ c_ + sa s7 ]BpR = Rnpy = sac/3 sa s_3 s7 + ca c7 sa sfl c7-cast ] (17)-s3 c_ s'_ c_ c7

4 THE FORWARD KINEMATIC TRANSFORMATION

This section considers the development of tile forward transformation which transforms the actu-

ator lengths li for i=1,2,... ,6 measured by six LDT's into the Cartesian position and orientation

of the payload platform with respect to the base platform. The forward kinematic problem can

be formulated as to find a Cartesian position specified by x, y, z and an orientation specified by

Roll-Pitch-Yaw angles a, _, and 7 to satisfy Equation (16) for a given set of actuator lengths

li for i=1,2,... ,6. In general, there exists no closed-form solution for the above problem since

Equation (16) represents a set of 6 highly nonlinear simultaneous equations with 6 unknowns.

Consequently iterative numerical methods must be employed to solve the above set of nonlinear

equations. In the following we will present the implementation of Newton-Raphson method for

solving the forward kinematic problem.

In order to apply the Newton-Raphson method, first from (11) we define 6 scalar functions

fi(a) = (:gi -b ui) 2 -4 (.Yi q- vi) 2 4- (zi + wi) 2 - li 2 = 0 (18)

for i=1,2,... ,6, where the vector a is delined as

a= [ al a2 a3 a4 a5 a6 ] = x y z a _ 7 , (19)

and then employ the following algorithm [20] to solve for a:

Newton-Raphson Algorithm

Step 1: Select an initial guess a.

Step 2: Compute the elements rij of pBR using (17) for i, j=1,2,...,6.

Step 3: Compute 2;,_/i, 2i, using (7) and ui, vi, wi using (9) for i=1,2,... ,6.

Step 4: Compute fi(a) and A 0 = _ using (18) for i, j=l,2,... ,6°

Step 5: Compute Bi = -f_(a) for i=1,2,...,6. If 6_j=l I Bj I< toll (tolerance), stop and select

a as the solution.

Step 6: Solve 6 = .. _j=l_aJ <_j=l Aij_faj Bi for _faj for i,j=1,2,. ,6 using LU decomposition. If 6

tola (tolerance), stop and select a _ the solution.

Step 7: Select a '_'_ = a + _a and repeat Steps 1-7.

1c(_- cosa, and sa _--sina.



Computation of Partial Derivatives

In order to minimize the computational time of the Newton-Raphson Algorithm, the expressions

for computing the partial derivatives in Step 4 of the algorithm should be simplified. First using

(9) and (17), the partial derivatives of ui, vi, and wi with respect to the angles a,/3, and 3' can

OWl
--=0;
0a

be computed as follows:

From (7), we note that

Employing (20)-(23), we obtain

0_
Oa5

Oui Oui Ou_ (20)-- = --Vi; -- = Ct_ Wi; -- = Ply r13,
O_ 013 07

Ovi Ovi Ov____= (21)
0--_ = ui; 0---_= s_ wi; Or pi_ r23,

Owi -- = (22)
0/3 (cfl Pi_ + sf3 s 7 Piu); Owl-- Or Ply r33.

Oi, 09_ 0%

Ox Oy Oz

after intensive simplification

of_ of_ oA
Oal - Ox = _ = 2(_i+ ui),

Of_ Oj_ OA
- - 2(9i + v_),

Oa2 Oy OL

Ofi Ofi Ofi
- - 2(_i + w;),

Oa3 Oz Ozi

Of_ = OL = 2(-em + 9_u_),
Oa4 0o:

o_
- 2[(-e_ e. + 9i _.)w_ - (pi_ c/3+ p_ _ _7)ed

0Z

Ofi = Ofi = 2piy(_irl3 + ffir23 + zTir33).
Oa6 07

(23)

(24)

(25)

(26)

(27)

(28)

(29)

Modified Jacobian Matrix

Conventionally the Manipulator Jacobian Matrix is defined as a matrix relating joint velocities to

Cartesian velocities composed of translational velocities and rotational velocities. For the robot

wrist, since actuator lengths are selected as joint variables, the time rates of change of actuator

lengths il, i2,..., i6 are joint velocities. However in order to utilize the partial derivatives

computed for the forward kinematic transformation, we define here the velocities of Cartesian

positions of the payload platform with Frame {B}, namely 5:, _ and _ as the translational
velocities and the velocities of the Roll-Pitch-Yaw angles &,/3, and _ as the rotational velocities.

The matrix J which relates the length velocities to translation velocities and Roll-Pitch-Yaw

angle velocities is therefore called The Modified Jacobian Matrix. Denoting

a= (al t_2 a3 a4 a5 a6) T-- (x Y _ _ _ ,_)T, (30)



and

weobtain

[=(]1 [2 i3 i4 is i6) T, (31)

fi = JM ], (32)

or

i = JM -1 a. (33)

where JM is the Modified Jacobian Matrix. Calling k0 = _@j, the ij-element of JM -1 , from

(33) we have

6 60li h
ii = _ kijizj : _ _ 3" (34)

j=l j=l

Now solving for li 2 in (18) yields

li2 = (_ + u_): + (9; + v_): + (s_ + w_)2 = J] (35)

for i=1,2,... ,6. Recognizing that ._ is a function of :_, _, _, a, /3, and 7, and using (23), we

differentiate both sides of (34) with respect to time to obtain

6 0_.
21i ii = _--aj (36)

j=l Oaj

from which solving for li yields

6 lOfih

j:l

Now comparing (34) and (37) and noting fiom (3.5) and (18) that _ = 0°@_,we arrive at

(37)

1 Of/ (38)
kij - 21i Oaj

where 0fi be obtained from Step 4 of the Newton-Raphson Algorithm using (24)-(29). In
oaj can

other words, we just showed that the inverse of the Modified Jacobian Matrix can be computed

using the results of the forward kinematic transformation.

5 COMPUTER SIMULATION STUDY

In this section we will report results obtained fl'om the computer simulation conducted to study

the efficiency of the developed inverse and forward kinematic transformations as well as the
Modified Jacobian matrix. The simulation scheme employed in the study is illustrated in Figure

5. In the upper loop, a set of Cartesian test trajectories coml)rised by Vector a are converted

to the corresponding actuator length trajectories comprised by Vector l via the inverse kine-

matic transformation. The Newton-Raphson Algorithm implementing the forward kinematic

transformation is then applied to convert 1 to ac, a vector composed of computed Cartesian



trajectoriescorrespondingto 1. The computedCartesiantrajectoriesare thencomparedwith
the Cartesiantest trajectoriesandtheresultingerrorsarerecorded.In addition,the testlength
velocitiescontainedby i areobtainedby differentiatingl with respectto time. In the lower
loop,the Cartesiantest velocitiescomprisedby Vectorh are obtained by differentiating a with

respect to time. The Cartesian test velocities 5. are then converted to the corresponding length

velocities, ic using the Inverse Modified Jacobian Matrix JM -1. Errors in length velocities are

then obtained by comparing the computed length velocities with the test length velocities. The

developed transformations are implemented in C and graphical facility is provided by MATLAB.

Computer simulation results for two test cases are presented and discussed below.

Test Case 1: Straight Line Motion

Figure 6-8 present the computer simulation results of the case in which the Cartesian test

trajectories specify a straight line ill the x-y plane of the base frame. The straight line motion

is described by

3exp(__L5tx(t) = xo + 6.311+ 43 ) - 4 exp(- t)] (39)

and
3.5

y(t) = Yo + 9.4511 + 3exp(- :_:t) - 4 exp(--_--t)] (40)

where the initial position is denoted by x0 = -3.5 inches, Y0 = -5 inches. The computer simu-

lation was conducted with a sampling time of 0.05 second on a SUN workstation for 5 seconds.

According to Figure 6 which presents the errors in Cartesian positions x, y, z, a maximum error

of-2.146 microinch occurs in y-position and a maximum Root-Mean-Square (I:tMS) error of

0.7615 microinch occurs in x-position. Tile errors in Roll-Pitch-Yaw (RPY) angles are showed

in Figure 7 where _ maximum error of 0.156 microradian and a maximum RMS error of 0.623

microradian occur in the Roll angle. According to l?igure 8 which presents the errors in length

velocities, relatively large errors exist at the beginning of the simulation and settle down almost

to zero after about 1see. A maximum error of 0.1619 inch/sec and a maximum RMS error of

0.0361 inch/sec occur in the second actuator length.

Test Case 2: Circular Motion

Computer simulation results of the case in which the Cartesian test trajectories specify a circular

motion are presented in Figures 9-11. The circular motion consists of 3 segments described by

z(t) = Rcos(I,i; y(t) = RsinOi for gi-1 _--t _ l i for i = 1,2,3 (41)

where the circular path radius R = 5 inches, and

¢_(t) = ¢0 + _-t_
2 '

%(0 = ¢_ +_(t - tl),

Z )2%(0 = ¢o - _(t_ - t

(42)

(43)

(44)



with ¢0 = 0 radian; ¢1 ---- (I)l(tl) radian, angular velocity w = fltl radian/sec and the angular

acceleration fl = 2r/[tl (t3- tl)] radian/sec 2. The computer simulation was conducted on a SUN

workstation with a sampling time of 0.05 second for 5 seconds.

The errors in Cartesian positions x, y, z are showed in Figure 9 where there exist a maximum

error of-2.384 microinch and a maximum RMS error of 0.8737 microinch in x-position. According

to Figure 10 which presents the errors in RPY angles, a maximum error of 0.154 microradian

and a maximum RMS error of 0.0607 microradian occur in Roll angle. The errors in length

velocities are reported in Figure 11 where a maximum error of-0.049 inch/sec occurs in the fifth

actuator length and a maximum RMS error of 0.025 inch/sec occurs in both the first and the

sixth actuator lengths. The complete simulation results are tabulated in Table 1.

x [ in]
y [pin]

Straight Line Motion

[#tad]

Max Error

-1.907

-2.146

Circular Motion

RMS Error 1[ Max Error

0.7615

0.7313

-2.384

1.9374

RMS Error

0.8737

0.7367

z [#in] -1.907 0.2684 -1.907 0.2691

a [#ra_ 0.156 0.0623 0.154 0.0607

[#rad] 0.103 0.0407 -0.113 0.0,161
0.106 0.0445 0.111 0.0473

0.1546 0.0343 0.0419

0.1619 0.0361 -0.0486

-0.0433 -0.0177 0.0473

0.0955 0.0212 0.0,178

0.1084 0.0239 -0.0494

-0.0166 0.4919-0.0369

il in

13 in

0.0250

0.0196

0.0215

0.0216

0.0197

0.0250

Table 1: Computer simulation results

6 CONCLUSION

This report presented a 6 DOF robotic wrist built at Goddard Space Flight Center (NASA)

to investigate the feasibility of autonomous robotic operations in space. Designed based on

the mechanism of the Stewart Platform, the wrist mainly consists of two platforms, six linear

actuators, and a sensor system and is mounted to a Cincinnati T3 robot to study high preci-

sion robotic assembly. Using vector analysis and coordinate fi'ame assignment, a closed-form
solution was obtained for the inverse kinematic transformation to convert Cartesian variables

into required actuator lengths. The inverse kinematic equations were then extensively simpli-

fied and then applied to develop an iterative solution for the forward kinematic transformation

converting actuator lengths to Cartesian variables using the Newton-Raphson method. It was

proved that a Modified Jacobian Matrix relating length velocities to translational velocities and

velocities of RPY angles can be obtained as part of the forward kinematic transformation. Re-

sults of computer simulation conducted to evaluate the developed transformations and Modified



Jacobianmatrix showedthat the conversionaccuracieswereexcellentwith very negligibleer-
rors. Current research activities focus on implementing the developed transformations for use in

re_l-time control of the robot wrist motion. Control schemes such as fixed-gain PID controller

and adaptive controller are also currently developed in the IRL to control the motion of the

wrist during a high precision assembly of NASA hardwares.
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Figure 1: The GSFC-IRL robot manipulator

Figure 2: The Stewart Platform-based robotic wrist
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